Search results
Results from the WOW.Com Content Network
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .
The inner product of a Euclidean space is often called dot product and denoted x ⋅ y. This is specially the case when a Cartesian coordinate system has been chosen, as, in this case, the inner product of two vectors is the dot product of their coordinate vectors. For this reason, and for historical reasons, the dot notation is more commonly ...
In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product (or rarely the projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see Inner product space for more).
Every inner product space is also a normed space. A normed space underlies an inner product space if and only if it satisfies the parallelogram law, or equivalently, if its unit ball is an ellipsoid. Angles between vectors are defined in inner product spaces. A Hilbert space is defined as a complete inner product space. (Some authors insist ...
For =, the ‖ ‖-norm is even induced by a canonical inner product , , called the Euclidean inner product, which means that ‖ ‖ = , holds for all vectors . This inner product can expressed in terms of the norm by using the polarization identity .
Using the group structure, any inner product on the tangent space at the identity (or any other particular tangent space) can be transported to all other tangent spaces to define a Riemannian metric. Formally, given an inner product g e on the tangent space at the identity, the inner product on the tangent space at an arbitrary point p is ...
A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be a bilinear map and ( H , H , ⋅ , ⋅ ) {\displaystyle (H,H,\langle \cdot ,\cdot \rangle )} will form a dual system .
More precisely, a Euclidean space E is defined as a set to which is associated an inner product space of finite dimension over the reals , and a group action of the additive group of , which is free and transitive (See Affine space for details of this construction).