Search results
Results from the WOW.Com Content Network
The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (tree with no nodes, if such ...
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
A labeled binary tree of size 9 (the number of nodes in the tree) and height 3 (the height of a tree defined as the number of edges or links from the top-most or root node to the farthest leaf node), with a root node whose value is 1. The above tree is unbalanced and not sorted.
For an m-ary tree with height h, the upper bound for the maximum number of leaves is . The height h of an m-ary tree does not include the root node, with a tree containing only a root node having a height of 0. The height of a tree is equal to the maximum depth D of any node in the tree.
Let h ≥ –1 be the height of the classic B-tree (see Tree (data structure) § Terminology for the tree height definition). Let n ≥ 0 be the number of entries in the tree. Let m be the maximum number of children a node can have. Each node can have at most m−1 keys.
The height of an external node is zero, and the height of any internal node is always one plus the maximum of the heights of its two children. Thus, the height function of an AVL tree obeys the constraints of a WAVL tree, and we may convert any AVL tree into a WAVL tree by using the height of each node as its rank. [1] [2]
Height - Length of the path from the root to the deepest node in the tree. A (rooted) tree with only one node (the root) has a height of zero. In the example diagram, the tree has height of 2. Sibling - Nodes that share the same parent node. A node p is an ancestor of a node q if it exists on the path from q to the root. The node q is then ...
Unlike red–black trees, red nodes on an AA tree can only be added as a right subchild. In other words, no red node can be a left sub-child. This results in the simulation of a 2–3 tree instead of a 2–3–4 tree , which greatly simplifies the maintenance operations.