Search results
Results from the WOW.Com Content Network
A is a subset of B (denoted ) and, conversely, B is a superset of A (denoted ). In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B.
If A is a subset of B, then one can also say that B is a superset of A, that A is contained in B, or that B contains A. In symbols, A ⊆ B means that A is a subset of B, and B ⊇ A means that B is a superset of A. Some authors use the symbols ⊂ and ⊃ for subsets, and others use these symbols only for proper subsets. For clarity, one can ...
* The set D = {1, 2, 3} is a subset (but {{em|not}} a proper subset) of E = {1, 2, 3}, thus <math>D \subseteq E</math> is true, and <math>D \subsetneq E</math> is not true (false). I think \subseteq that I bolded should be \subset. Otherwise both proper and improper subsets are denoted by the same symbol.
2. Fodor's lemma states that a regressive function on a regular uncountable cardinal is constant on a stationary subset. forcing Forcing (mathematics) is a method of adjoining a generic filter G of a poset P to a model of set theory M to obtain a new model M[G] formula Something formed from atomic formulas x=y, x∈y using ∀∃∧∨¬ ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Every finite or countably infinite subset of the real numbers is a null set. For example, the set of natural numbers , the set of rational numbers and the set of algebraic numbers are all countably infinite and therefore are null sets when considered as subsets of the real numbers.
In mathematics, a filter on a set is a family of subsets such that: [1]. and ; if and , then ; If and , then ; A filter on a set may be thought of as representing a "collection of large subsets", [2] one intuitive example being the neighborhood filter.
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation