Search results
Results from the WOW.Com Content Network
T2*-weighted imaging of the brain 26 weeks after subarachnoid hemorrhage, showing hemosiderin deposits as hypointense areas. [1] T 2 *-weighted imaging is an MRI sequence to quantify observable or effective T 2 (T2* or "T2-star"). In this sequence, hemorrhages and hemosiderin deposits become hypointense. [2]
CSF Fluid Flow MRI detects back and forth flow of Cerebrospinal fluid that corresponds to vascular pulsations from mostly the cardiac cycle of the choroid plexus. Bulk transport of CSF, characterized by CSF circulation through the Central Nervous System , is not used because it is too slow to assess clinically. [ 2 ]
Magnetic resonance myelography (MR myelography or MRI myelography) is a noninvasive medical imaging technique that can provide anatomic information about the subarachnoid space. It is a type of MRI examination that uses a contrast medium and magnetic resonance imaging scanner to detect pathology of the spinal cord , including the location of a ...
MRI scans showing hyperintensities. A hyperintensity or T2 hyperintensity is an area of high intensity on types of magnetic resonance imaging (MRI) scans of the brain of a human or of another mammal that reflect lesions produced largely by demyelination and axonal loss.
Susceptibility weighted imaging (SWI), originally called BOLD venographic imaging, is an MRI sequence that is exquisitely sensitive to venous blood, hemorrhage and iron storage. SWI uses a fully flow compensated, long echo, gradient recalled echo (GRE) pulse sequence to acquire images.
In Dynamic susceptibility contrast MR imaging (DSC-MRI, or simply DSC), Gadolinium contrast agent (Gd) is injected (usually intravenously) and a time series of fast T2*-weighted images is acquired. As Gadolinium passes through the tissues, it induces a reduction of T2* in the nearby water protons; the corresponding decrease in signal intensity ...
In analysis of the fetal brain, MRI provides more information about gyration than ultrasound. [24] MRI is sensitive for the detection of brain abscess. [25] A number of different imaging modalities or sequences can be used with imaging the nervous system: T 1-weighted (T1W) images: Cerebrospinal fluid is dark.
Echo-planar imaging is an MRI technique that reduces the time of data acquisition to reduce capture of patient movement. An image in the EPI can be captured in between 20-100 milliseconds. Multiple lines of data are created by transmitting RF pulse sequences with a gradient difference of 90° and 180°.