enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The heat transfer coefficient is often calculated from the Nusselt number (a dimensionless number). There are also online calculators available specifically for Heat-transfer fluid applications. Experimental assessment of the heat transfer coefficient poses some challenges especially when small fluxes are to be measured (e.g. < 0.2 W/cm 2). [1] [2]

  3. Near-field radiative heat transfer - Wikipedia

    en.wikipedia.org/wiki/Near-field_radiative_heat...

    Prediction of radiative heat transfer between two spheres computed using near-field (NFRHT), classical (CRT), and discrete dipole (DDA) methods. Near-field radiative heat transfer (NFRHT) is a branch of radiative heat transfer which deals with situations for which the objects and/or distances separating objects are comparable or smaller in ...

  4. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    Once that happens, radiation can travel far enough that the local emission, B λ (T), can differ from the absorption of incoming I λ. The altitude where the transition to semi-transparency occurs is referred to as the "effective emission altitude" or "effective radiating level." Thermal radiation from this altitude is able to escape to space.

  5. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    Newton's law of cooling (in the form of heat loss per surface area being equal to heat transfer coefficient multiplied by temperature gradient) can then be invoked to determine the heat loss or gain from the object, fluid and/or surface temperatures, and the area of the object, depending on what information is known.

  6. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    Formulas and correlations are available in many references to calculate heat transfer coefficients for typical configurations and fluids. For laminar flows, the heat transfer coefficient is usually smaller than in turbulent flows because turbulent flows have strong mixing within the boundary layer on the heat transfer surface. [6]

  7. Atmospheric radiative transfer codes - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_radiative...

    In such applications, radiative transfer codes are often called radiation parameterization. In these applications, the radiative transfer codes are used in forward sense, i.e. on the basis of known properties of the atmosphere, one calculates heating rates, radiative fluxes, and radiances. There are efforts for intercomparison of radiation codes.

  8. Intensity (heat transfer) - Wikipedia

    en.wikipedia.org/wiki/Intensity_(heat_transfer)

    In the field of heat transfer, intensity of radiation is a measure of the distribution of radiant heat flux per unit area and solid angle, in a particular direction, defined according to d q = I d ω cos ⁡ θ d A {\displaystyle dq=I\,d\omega \,\cos \theta \,dA}

  9. Combined forced and natural convection - Wikipedia

    en.wikipedia.org/wiki/Combined_forced_and...

    The first case is when natural convection aids forced convection. This is seen when the buoyant motion is in the same direction as the forced motion, thus accelerating the boundary layer and enhancing the heat transfer. [5] Transition to turbulence, however, can be delayed. [6] An example of this would be a fan blowing upward on a hot plate.