Search results
Results from the WOW.Com Content Network
Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.
Case 1: three sides given (SSS). The cosine rule may be used to give the angles A, B, and C but, to avoid ambiguities, the half angle formulae are preferred. Case 2: two sides and an included angle given (SAS). The cosine rule gives a and then we are back to Case 1. Case 3: two sides and an opposite angle given (SSA).
To find an unknown angle, the law of cosines is safer than the law of sines. The reason is that the value of sine for the angle of the triangle does not uniquely determine this angle. For example, if sin β = 0.5 , the angle β can equal either 30° or 150°.
The law of cosines can be used to determine a side of a triangle if two sides and the angle between them are known. It can also be used to find the cosines of an angle (and consequently the angles themselves) if the lengths of all the sides are known.
Given two sides a and b and the angle between the sides C, the area of the triangle is given by half the product of the lengths of two sides and the sine of the angle between the two sides: [85] Area = Δ = 1 2 a b sin C {\displaystyle {\mbox{Area}}=\Delta ={\frac {1}{2}}ab\sin C}
If the law of cosines is used to solve for c, the necessity of inverting the cosine magnifies rounding errors when c is small. In this case, the alternative formulation of the law of haversines is preferable. [3] A variation on the law of cosines, the second spherical law of cosines, [4] (also called the cosine rule for angles [1]) states:
The sign of the square root needs to be chosen properly—note that if 2 π is added to θ, the quantities inside the square roots are unchanged, but the left-hand-sides of the equations change sign. Therefore, the correct sign to use depends on the value of θ. For the tan function, the equation is:
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.