Search results
Results from the WOW.Com Content Network
Lithium chloride is a chemical compound with the formula Li Cl.The salt is a typical ionic compound (with certain covalent characteristics), although the small size of the Li + ion gives rise to properties not seen for other alkali metal chlorides, such as extraordinary solubility in polar solvents (83.05 g/100 mL of water at 20 °C) and its hygroscopic properties.
This page provides supplementary chemical data on Lithium chloride. Solubility. Solubility of LiCl in various solvents (g LiCl / 100g of solvent at 25 °C) H 2 O:
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
Ionic radius, r ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice.
Lithium is a highly reactive alkali metal that is widely used in various industrial applications due to its unique properties. Lithium compounds are formed by combining lithium with other elements, such as oxygen, sulfur, and chlorine, to form different chemical compounds.
Sodium chloride crystal lattice. The concept of lattice energy was originally applied to the formation of compounds with structures like rocksalt and sphalerite where the ions occupy high-symmetry crystal lattice sites. In the case of NaCl, lattice energy is the energy change of the reaction
Lithium perchlorate is also used as an electrolyte salt in lithium-ion batteries.Lithium perchlorate is chosen over alternative salts such as lithium hexafluorophosphate or lithium tetrafluoroborate when its superior electrical impedance, conductivity, hygroscopicity, and anodic stability properties are of importance to the specific application. [11]
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.