Search results
Results from the WOW.Com Content Network
Some authors call this type of grammar a right-regular grammar (or right-linear grammar) [1] and the type above a strictly right-regular grammar (or strictly right-linear grammar). [2] An extended left-regular grammar is one in which all rules obey one of A → w, where A is a non-terminal in N and w is in Σ * A → Bw, where A and B are in N ...
In theoretical computer science and formal language theory, a regular language (also called a rational language) [1] [2] is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science (as opposed to many modern regular expression engines, which are augmented with features that allow the recognition of non-regular languages).
Successor automata can learn exactly the class of local languages. Since each regular language is the homomorphic image of a local language, grammars from the former class can be learned by lifting, if an appropriate (depending on the intended application) homomorphism is provided.
Automata also appear in the theory of finite fields: the set of irreducible polynomials that can be written as composition of degree two polynomials is in fact a regular language. [15] Another problem for which automata can be used is the induction of regular languages .
On this view, the automaton generates a formal language, which is a set of strings. The two views of automata are equivalent: the function that the automaton computes is precisely the indicator function of the set of strings it generates. The class of languages generated by finite automata is known as the class of regular languages.
In automata theory, the class of unrestricted grammars (also called semi-Thue, type-0 or phrase structure grammars) is the most general class of grammars in the Chomsky hierarchy. No restrictions are made on the productions of an unrestricted grammar, other than each of their left-hand sides being non-empty.
To decide whether two given regular expressions describe the same language, each can be converted into an equivalent minimal deterministic finite automaton via Thompson's construction, powerset construction, and DFA minimization. If, and only if, the resulting automata agree up to renaming of states, the regular expressions' languages agree.
To convert a grammar to Chomsky normal form, a sequence of simple transformations is applied in a certain order; this is described in most textbooks on automata theory. [4]: 87–94 [5] [6] [7] The presentation here follows Hopcroft, Ullman (1979), but is adapted to use the transformation names from Lange, Leiß (2009).