Search results
Results from the WOW.Com Content Network
Data Warehouse and Data mart overview, with Data Marts shown in the top right. In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is a core component of business intelligence. [1] Data warehouses are central repositories of data integrated from ...
The single most dramatic way to affect performance in a large data warehouse is to provide a proper set of aggregate (summary) records that coexist with the primary base records. Aggregates can have a very significant effect on performance, in some cases speeding queries by a factor of one hundred or even one thousand.
Data Warehouse and Data Mart overview, with Data Marts shown in the top right.. A data mart is a structure/access pattern specific to data warehouse environments. The data mart is a subset of the data warehouse that focuses on a specific business line, department, subject area, or team. [1]
A transactional table is the most basic and fundamental. The grain associated with a transactional fact table is usually specified as "one row per line in a transaction", e.g., every line on a receipt. Typically a transactional fact table holds data of the most detailed level, causing it to have a great number of dimensions associated with it.
Other data warehouses (or even other parts of the same data warehouse) may add new data in a historical form at regular intervals – for example, hourly. To understand this, consider a data warehouse that is required to maintain sales records of the last year. This data warehouse overwrites any data older than a year with newer data.
A common data warehouse example involves sales as the measure, with customer and product as dimensions. In each sale a customer buys a product. The data can be sliced by removing all customers except for a group under study, and then diced by grouping by product. A dimensional data element is similar to a categorical variable in statistics.
Data warehouse automation (DWA) refers to the process of accelerating and automating the data warehouse development cycles, while assuring quality and consistency. DWA is believed to provide automation of the entire lifecycle of a data warehouse, from source system analysis to testing to documentation .
In computerized business management, single version of the truth (SVOT), is a technical concept describing the data warehousing ideal of having either a single centralised database, or at least a distributed synchronised database, which stores all of an organisation's data in a consistent and non-redundant form.