Search results
Results from the WOW.Com Content Network
Yao's method collects in u first those x i that appear to the highest power ; in the next round those with power are collected in u as well etc. The variable y is multiplied h − 1 {\displaystyle h-1} times with the initial u , h − 2 {\displaystyle h-2} times with the next highest powers, and so on.
KRC (Kent Recursive Calculator) is a lazy functional language developed by David Turner from November 1979 to October 1981 [1] based on SASL, with pattern matching, guards and ZF expressions [2] (now more usually called list comprehensions).
The recursive program above is tail-recursive; it is equivalent to an iterative algorithm, and the computation shown above shows the steps of evaluation that would be performed by a language that eliminates tail calls. Below is a version of the same algorithm using explicit iteration, suitable for a language that does not eliminate tail calls.
Kent Recursive Calculator Add article description KRC ( Kent Recursive Calculator ) is a lazy functional language developed by David Turner from November 1979 to October 1981 [1] based on SASL , with pattern matching , guards and ZF expressions [2] (now more usually called list comprehensions ).
All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive. After Ackermann's publication [ 2 ] of his function (which had three non-negative integer arguments), many authors modified it to suit various purposes, so that today "the Ackermann ...
A total recursive function is a partial recursive function that is defined for every input. Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function (in fact, provable total), that is not primitive ...
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m .
Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.