enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Big data - Wikipedia

    en.wikipedia.org/wiki/Big_data

    Big data analytics has been used in healthcare in providing personalized medicine and prescriptive analytics, clinical risk intervention and predictive analytics, waste and care variability reduction, automated external and internal reporting of patient data, standardized medical terms and patient registries.

  3. Data management - Wikipedia

    en.wikipedia.org/wiki/Data_management

    While there are numerous analysis tools in the market, Big Data analytics is the most common and advanced technology that has led to the following hypothesis: Data analytic tools used to analyze data collected from numerous data sources determine the quality and reliability of data analysis.

  4. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    The data is necessary as inputs to the analysis, which is specified based upon the requirements of those directing the analytics (or customers, who will use the finished product of the analysis). [ 14 ] [ 15 ] The general type of entity upon which the data will be collected is referred to as an experimental unit (e.g., a person or population of ...

  5. DataOps - Wikipedia

    en.wikipedia.org/wiki/Dataops

    DataOps applies to the entire data lifecycle [3] from data preparation to reporting, and recognizes the interconnected nature of the data analytics team and information technology operations. [4] DataOps incorporates the Agile methodology to shorten the cycle time of analytics development in alignment with business goals. [3]

  6. Analytics - Wikipedia

    en.wikipedia.org/wiki/Analytics

    Data analysis focuses on the process of examining past data through business understanding, data understanding, data preparation, modeling and evaluation, and deployment. [8] It is a subset of data analytics, which takes multiple data analysis processes to focus on why an event happened and what may happen in the future based on the previous data.

  7. Cross-industry standard process for data mining - Wikipedia

    en.wikipedia.org/wiki/Cross-industry_standard...

    A review and critique of data mining process models in 2009 called the CRISP-DM the "de facto standard for developing data mining and knowledge discovery projects." [16] Other reviews of CRISP-DM and data mining process models include Kurgan and Musilek's 2006 review, [8] and Azevedo and Santos' 2008 comparison of CRISP-DM and SEMMA. [9]

  8. Big data maturity model - Wikipedia

    en.wikipedia.org/wiki/Big_Data_Maturity_Model

    The TDWI big data maturity model is a model in the current big data maturity area and therefore consists of a significant body of knowledge. [6] Maturity stages. The different stages of maturity in the TDWI BDMM can be summarized as follows: Stage 1: Nascent. The nascent stage as a pre–big data environment. During this stage:

  9. IT operations analytics - Wikipedia

    en.wikipedia.org/wiki/IT_Operations_Analytics

    In the fields of Information Technology (IT) and Systems Management, IT operations analytics (ITOA) is an approach or method to retrieve, analyze, and report data for IT operations. ITOA may apply big data analytics to large datasets to produce business insights. [1] [2] In 2014, Gartner predicted its use might increase revenue or reduce costs. [3]