Search results
Results from the WOW.Com Content Network
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
In number theory, σ is included in various divisor functions, especially the sigma function or sum-of-divisors function. In applied mathematics , σ( T ) denotes the spectrum of a linear map T . In complex analysis , σ is used in the Weierstrass sigma-function .
A stopping time can define a -algebra , the so-called stopping time sigma-algebra, which in a filtered probability space describes the information up to the random time in the sense that, if the filtered probability space is interpreted as a random experiment, the maximum information that can be found out about the experiment from arbitrarily ...
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
Series are represented by an expression like + + +, or, using capital-sigma summation notation, [8] =. The infinite sequence of additions expressed by a series cannot be explicitly performed in sequence in a finite amount of time.
sigma: summation operator area charge density: coulomb per square meter (C/m 2) electrical conductivity: siemens per meter (S/m) normal stress: pascal (Pa) scattering cross section: barn (10^-28 m^2) surface tension: newton per meter (N/m) tau: torque: newton meter (N⋅m) shear stress: pascal time constant: second (s)
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
Additivity and sigma-additivity are particularly important properties of measures. They are abstractions of how intuitive properties of size (length, area, volume) of a set sum when considering multiple objects. Additivity is a weaker condition than σ-additivity; that is, σ-additivity implies additivity.