Search results
Results from the WOW.Com Content Network
Electrical breakdown in an electric discharge showing the ribbon-like plasma filaments from a Tesla coil.. In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material (a dielectric), subjected to a high enough voltage, suddenly becomes a conductor and current flows through it.
The characteristics of the skin are non-linear however. If the voltage is above 450–600 V, then dielectric breakdown of the skin occurs. [21] The protection offered by the skin is lowered by perspiration, and this is accelerated if electricity causes muscles to contract above the let-go threshold for a sustained period of time. [14]
Dielectric breakdown due to overvoltage or aging of the dielectric, occurring when breakdown voltage falls below operating voltage. Some types of capacitors "self-heal", as internal arcing vaporizes parts of the electrodes around the failed spot.
In physics, the term dielectric strength has the following meanings: . for a pure electrically insulating material, the maximum electric field that the material can withstand under ideal conditions without undergoing electrical breakdown and becoming electrically conductive (i.e. without failure of its insulating properties).
Intrinsic breakdown is caused by electrical stress induced defect generation. Extrinsic breakdown is caused by defects induced by the manufacturing process. For Integrated circuits, the time to breakdown is dependent on the thickness of the dielectric (gate oxide) and also on the material type, which is dependent on the manufacturing process node.
In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) (which does not completely bridge the space between the two conductors) of a small portion of a solid or fluid electrical insulation (EI) system under high voltage (HV) stress.
A useful macroscopic model that combines an electric field with DLA was developed by Niemeyer, Pietronero, and Weismann in 1984, and is known as the dielectric breakdown model (DBM). [7] Although the electrical breakdown mechanisms of air and PMMA plastic are considerably different, the branching discharges turn out to be related.
Breakdown voltage is a characteristic of an insulator that defines the maximum voltage difference that can be applied across the material before the insulator conducts. In solid insulating materials, this usually [citation needed] creates a weakened path within the material by creating permanent molecular or physical changes by the sudden current.