Search results
Results from the WOW.Com Content Network
In statistics, Cohen's h, popularized by Jacob Cohen, is a measure of distance between two proportions or probabilities. Cohen's h has several related uses: It can be used to describe the difference between two proportions as "small", "medium", or "large". It can be used to determine if the difference between two proportions is "meaningful".
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.
This statistics -related article is a stub. You can help Wikipedia by expanding it.
From the t-test, the difference between the group means is 6-2=4. From the regression, the slope is also 4 indicating that a 1-unit change in drug dose (from 0 to 1) gives a 4-unit change in mean word recall (from 2 to 6). The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods ...
The mean absolute difference (univariate) is a measure of statistical dispersion equal to the average absolute difference of two independent values drawn from a probability distribution. A related statistic is the relative mean absolute difference , which is the mean absolute difference divided by the arithmetic mean , and equal to twice the ...
For example, for A the first of these cells gives the sum of the probabilities for A being red, regardless of which possibility for B in the column above the cell occurs, as 2 / 3 . Thus the marginal probability distribution for A {\displaystyle A} gives A {\displaystyle A} 's probabilities unconditional on B {\displaystyle B} , in a ...
The total variation distance (or half the norm) arises as the optimal transportation cost, when the cost function is (,) =, that is, ‖ ‖ = (,) = {(): =, =} = [], where the expectation is taken with respect to the probability measure on the space where (,) lives, and the infimum is taken over all such with marginals and , respectively.