Search results
Results from the WOW.Com Content Network
Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. [2] Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That ...
That implies that product of any number of even functions is an even function as well. The product of two odd functions is an even function. The product of an even function and an odd function is an odd function. The quotient of two even functions is an even function. The quotient of two odd functions is an even function.
For instance, the UPC-A barcode for a box of tissues is "036000241457". The last digit is the check digit "7", and if the other numbers are correct then the check digit calculation must produce 7. Add the odd number digits: 0+6+0+2+1+5 = 14. Multiply the result by 3: 14 × 3 = 42. Add the even number digits: 3+0+0+4+4 = 11.
The number is taken to be 'odd' or 'even' according to whether its numerator is odd or even. Then the formula for the map is exactly the same as when the domain is the integers: an 'even' such rational is divided by 2; an 'odd' such rational is multiplied by 3 and then 1 is added.
An even permutation can be obtained as the composition of an even number (and only an even number) of exchanges (called transpositions) of two elements, while an odd permutation can be obtained by (only) an odd number of transpositions. The following rules follow directly from the corresponding rules about addition of integers: [1]
Accordingly, there are two variants of parity bits: even parity bit and odd parity bit. In the case of even parity, for a given set of bits, the bits whose value is 1 are counted. If that count is odd, the parity bit value is set to 1, making the total count of occurrences of 1s in the whole set (including the parity bit) an even number.
For example, the fact that positive numbers have unique factorizations means that one can determine whether a number has an even or odd number of distinct prime factors. Since 1 is not prime, nor does it have prime factors, it is a product of 0 distinct primes; since 0 is an even number, 1 has an even number of distinct prime factors.
The simplest checksum algorithm is the so-called longitudinal parity check, which breaks the data into "words" with a fixed number n of bits, and then computes the bitwise exclusive or (XOR) of all those words. The result is appended to the message as an extra word.