Search results
Results from the WOW.Com Content Network
LIBSVM and LIBLINEAR are two popular open source machine learning libraries, both developed at the National Taiwan University and both written in C++ though with a C API. LIBSVM implements the sequential minimal optimization (SMO) algorithm for kernelized support vector machines (SVMs), supporting classification and regression . [ 1 ]
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
libsvm, LIBSVM is a popular library of SVM learners; liblinear is a library for large linear classification including some SVMs; SVM light is a collection of software tools for learning and classification using SVM; SVMJS live demo Archived 2013-05-05 at the Wayback Machine is a GUI demo for JavaScript implementation of SVMs
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1]
statsmodels – Python package for statistics and econometrics (regression, plotting, hypothesis testing, generalized linear model (GLM), time series analysis, autoregressive–moving-average model (ARMA), vector autoregression (VAR), non-parametric statistics, ANOVA) Statistical Lab – R-based and focusing on educational purposes
Codecademy is an American online interactive platform that offers free coding classes in 13 different programming languages including Python, Java, Go, JavaScript, Ruby, SQL, C++, C#, Lua, and Swift, as well as markup languages HTML and CSS.
In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems (via learning to rank).The ranking SVM algorithm was published by Thorsten Joachims in 2002. [1]