Search results
Results from the WOW.Com Content Network
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in , .
The requirement that is a positive-definite inner product then says exactly that this matrix-valued function is a symmetric positive-definite matrix at . In terms of the tensor algebra , the Riemannian metric can be written in terms of the dual basis { d x 1 , … , d x n } {\displaystyle \{dx^{1},\ldots ,dx^{n}\}} of the cotangent bundle as
In mathematics, a self-adjoint operator on a complex vector space V with inner product , is a linear map A (from V to itself) that is its own adjoint. That is, A x , y = x , A y {\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle } for all x , y {\displaystyle x,y} ∊ V .
A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be a bilinear map and ( H , H , ⋅ , ⋅ ) {\displaystyle (H,H,\langle \cdot ,\cdot \rangle )} will form a dual system .
The integral is absolutely convergent and the Petersson inner product is a positive definite Hermitian form. For the Hecke operators T n {\displaystyle T_{n}} , and for forms f , g {\displaystyle f,g} of level Γ 0 {\displaystyle \Gamma _{0}} , we have:
Here's what a product scientist thinks. AOL. The Pink Stuff is a must-have for all cleaning fanatics. AOL. This anti-aging eye gel is a must-have for winter — and it's 20% off right now.
Price: $500 million Features: Two helipads, submarine, missile defense system, disco hall, several pools and hot tubs 2. Sailing Yacht A: Owned by Andrey Melnichenko
The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...