Search results
Results from the WOW.Com Content Network
Causal research, is the investigation of (research into) cause -relationships. [1][2][3] To determine causality, variation in the variable presumed to influence the difference in another variable (s) must be detected, and then the variations from the other variable (s) must be calculated (s). Other confounding influences must be controlled for ...
Causal inference is the process of determining the independent, actual effect of a particular phenomenon that is a component of a larger system. The main difference between causal inference and inference of association is that causal inference analyzes the response of an effect variable when a cause of the effect variable is changed. [1][2] The ...
Causal analysis is the field of experimental design and statistics pertaining to establishing cause and effect. [1] Typically it involves establishing four elements: correlation, sequence in time (that is, causes must occur before their proposed effect), a plausible physical or information-theoretical mechanism for an observed effect to follow from a possible cause, and eliminating the ...
Causal model. In metaphysics, a causal model (or structural causal model) is a conceptual model that describes the causal mechanisms of a system. Several types of causal notation may be used in the development of a causal model. Causal models can improve study designs by providing clear rules for deciding which independent variables need to be ...
Bradford Hill criteria. The Bradford Hill criteria, otherwise known as Hill's criteria for causation, are a group of nine principles that can be useful in establishing epidemiologic evidence of a causal relationship between a presumed cause and an observed effect and have been widely used in public health research.
Exploratory causal analysis. Causal analysis is the field of experimental design and statistical analysis pertaining to establishing cause and effect. [1][2] Exploratory causal analysis (ECA), also known as data causality or causal discovery[3] is the use of statistical algorithms to infer associations in observed data sets that are potentially ...
Causality. Causality is an influence by which one event, process, state, or object (a cause) contributes to the production of another event, process, state, or object (an effect) where the cause is at least partly responsible for the effect, and the effect is at least partly dependent on the cause. [1] The cause of something may also be ...
Statistics (from German: Statistik, orig. "description of a state, a country" [1]) is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. [2] In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical ...