Search results
Results from the WOW.Com Content Network
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose —that is, the element in the i -th row and j -th column is equal to the complex conjugate of the element in the j -th row and i -th column, for all indices i and j: is Hermitian {\displaystyle A {\text { is ...
Hermitian manifold. In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a ...
Rayleigh quotient. In mathematics, the Rayleigh quotient[1] (/ ˈreɪ.li /) for a given complex Hermitian matrix and nonzero vector is defined as: [2][3] For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose to the usual transpose . Note that for any non-zero scalar .
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space[1][2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive ...
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry (the complex conjugate of being , for real numbers and ). There are several notations, such as or , [1] , [2] or (often in physics) .
Spectral theorem. In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much ...
Hermite normal form. In linear algebra, the Hermite normal form is an analogue of reduced echelon form for matrices over the integers Z. Just as reduced echelon form can be used to solve problems about the solution to the linear system Ax = b where x is in Rn, the Hermite normal form can solve problems about the solution to the linear system Ax ...
POVM. In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum ...