Search results
Results from the WOW.Com Content Network
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose —that is, the element in the i -th row and j -th column is equal to the complex conjugate of the element in the j -th row and i -th column, for all indices i and j: is Hermitian {\displaystyle A {\text { is ...
Hermitian manifold. In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a ...
v. t. e. The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics ...
The general form of an inner product on is known as the Hermitian form and is given by , = † = † ¯, where is any Hermitian positive-definite matrix and † is the conjugate transpose of . For the real case, this corresponds to the dot product of the results of directionally-different scaling of the two vectors, with positive scale factors ...
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry (the complex conjugate of being , for real numbers and ). There are several notations, such as or , [1] , [2] or (often in physics) .
Rayleigh quotient. In mathematics, the Rayleigh quotient[1] (/ ˈreɪ.li /) for a given complex Hermitian matrix and nonzero vector is defined as: [2][3] For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose to the usual transpose . Note that for any non-zero scalar .
t. e. In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.
As explained below, the Lie algebra of Sp(n) is the compact real form of the complex symplectic Lie algebra sp(2n, C). Sp(n) is a real Lie group with (real) dimension n(2n + 1). It is compact and simply connected. [13] The Lie algebra of Sp(n) is given by the quaternionic skew-Hermitian matrices, the set of n-by-n quaternionic matrices that satisfy