enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    A 2×2 real and symmetric matrix representing a stretching and shearing of the plane. The eigenvectors of the matrix (red lines) are the two special directions such that every point on them will just slide on them. The example here, based on the Mona Lisa, provides a simple illustration. Each point on the painting can be represented as a vector ...

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral ...

  4. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    Eigenfunctions. In general, an eigenvector of a linear operator D defined on some vector space is a nonzero vector in the domain of D that, when D acts upon it, is simply scaled by some scalar value called an eigenvalue. In the special case where D is defined on a function space, the eigenvectors are referred to as eigenfunctions. That is, a ...

  5. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  6. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    Jacobi eigenvalue algorithm. In numerical linear algebra, the Jacobi eigenvalue algorithm is an iterative method for the calculation of the eigenvalues and eigenvectors of a real symmetric matrix (a process known as diagonalization). It is named after Carl Gustav Jacob Jacobi, who first proposed the method in 1846, [1] but only became widely ...

  7. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    In linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. [1] Let be an -dimensional vector space and let be the matrix representation of a linear map from to with respect to some ordered basis.

  8. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  9. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    Notation: The index j represents the jth eigenvalue or eigenvector. The index i represents the ith component of an eigenvector. Both i and j go from 1 to n, where the matrix is size n x n. Eigenvectors are normalized. The eigenvalues are ordered in descending order.