Search results
Results from the WOW.Com Content Network
In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [1] In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents flowing through each ...
A general formula for the current I X in a resistor R X that is in parallel with a combination of other resistors of total resistance R T (see Figure 1) is [1] = +, where I T is the total current entering the combined network of R X in parallel with R T.
In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.
It can be proved by considering the circuit as a single supernode. [3] Then, according to Ohm and Kirchhoff, the voltage between the ends of the circuit is equal to the total current entering the supernode divided by the total equivalent conductance of the supernode. The total current is the sum of the currents in each branch.
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.
The total current through or the total voltage across a particular branch is then calculated by summing all the individual currents or voltages. There is an underlying assumption to this method that the total current or voltage is a linear superposition of its parts. Therefore, the method cannot be used if non-linear components are present.
As the main Miller theorem, besides helping circuit analysis process, the dual version is a powerful tool for designing and understanding circuits based on modifying impedance by additional current. Typical applications are some exotic circuits with negative impedance as load cancellers, [ 6 ] capacitance neutralizers, [ 7 ] Howland current ...