Search results
Results from the WOW.Com Content Network
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
The electron transport chain and enzymes in the matrix play a large role in the citric acid cycle and oxidative phosphorylation. The citric acid cycle produces NADH and FADH2 through oxidation that will be reduced in oxidative phosphorylation to produce ATP. [2] [3]
The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.
Cytochrome c is an essential component of the respiratory electron transport chain in mitochondria. The heme group of cytochrome c accepts electrons from the bc 1 Complex III and transports them to Complex IV, while it transfers energy in the opposite direction. [citation needed]
It is the last enzyme in the respiratory electron transport chain of cells located in the membrane. It receives an electron from each of four cytochrome c molecules and transfers them to one oxygen molecule and four protons , producing two molecules of water.
The cellular location of cytochromes depends on their function. They can be found as globular proteins and membrane proteins. In the process of oxidative phosphorylation, a globular cytochrome cc protein is involved in the electron transfer from the membrane-bound complex III to complex IV. Complex III itself is composed of several subunits ...
These electrons enter the electron transport chain of the mitochondria via reduction equivalents to generate ATP. The shuttle system is required because the mitochondrial inner membrane is impermeable to NADH, the primary reducing equivalent of the electron transport chain.
This is an electron transport chain (ETC). Electron transport chains often produce energy in the form of a transmembrane electrochemical potential gradient. The gradient can be used to transport molecules across membranes. Its energy can be used to produce ATP or to do useful work, for instance mechanical work of a rotating bacterial flagella.