enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    The first Dahlquist barrier states that a zero-stable and linear q-step multistep method cannot attain an order of convergence greater than q + 1 if q is odd and greater than q + 2 if q is even. If the method is also explicit, then it cannot attain an order greater than q ( Hairer, Nørsett & Wanner 1993 , Thm III.3.5).

  3. Zero stability - Wikipedia

    en.wikipedia.org/wiki/Zero_stability

    A linear multistep method is zero-stable if all roots of the characteristic equation that arises on applying the method to ′ = have magnitude less than or equal to unity, and that all roots with unit magnitude are simple. [2]

  4. Stiff equation - Wikipedia

    en.wikipedia.org/wiki/Stiff_equation

    Explicit multistep methods can never be A-stable, just like explicit Runge–Kutta methods. Implicit multistep methods can only be A-stable if their order is at most 2. The latter result is known as the second Dahlquist barrier; it restricts the usefulness of linear multistep methods for stiff equations. An example of a second-order A-stable ...

  5. Truncation error (numerical integration) - Wikipedia

    en.wikipedia.org/wiki/Truncation_error...

    For linear multistep methods, an additional concept called zero-stability is needed to explain the relation between local and global truncation errors. Linear multistep methods that satisfy the condition of zero-stability have the same relation between local and global errors as one-step methods.

  6. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Explicit examples from the linear multistep family include the Adams–Bashforth methods, and any Runge–Kutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit ...

  7. Composite methods for structural dynamics - Wikipedia

    en.wikipedia.org/wiki/Composite_methods_for...

    Although there are lots of available methods, see the review, [3] the existing composite methods basically employ the combination of the trapezoidal rule and linear multistep methods. However, to acquire at least second-order accuracy and unconditional stability , the scalar parameters of each method and the division of sub-steps need to be ...

  8. General linear methods - Wikipedia

    en.wikipedia.org/wiki/General_linear_methods

    General linear methods (GLMs) are a large class of numerical methods used to obtain numerical solutions to ordinary differential equations. They include multistage Runge–Kutta methods that use intermediate collocation points , as well as linear multistep methods that save a finite time history of the solution.

  9. Trapezoidal rule (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule...

    In fact, the region of absolute stability for the trapezoidal rule is precisely the left-half plane. This means that if the trapezoidal rule is applied to the linear test equation y' = λy, the numerical solution decays to zero if and only if the exact solution does. However, the decay of the numerical solution can be many orders of magnitude ...