Search results
Results from the WOW.Com Content Network
It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the sun’s rays and a horizontal plane. [4] [5] At solar noon, the zenith angle is at a minimum and is equal to latitude minus solar declination angle. This is the basis by which ancient mariners navigated the oceans. [6]
Therefore, the sunbeam hitting the ground at a 30° angle spreads the same amount of light over twice as much area (if we imagine the Sun shining from the south at noon, the north–south width doubles; the east–west width does not). Consequently, the amount of light falling on each square mile is only half as much.
It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the sun’s rays and a horizontal plane. [1] [2] At solar noon, the zenith angle is at a minimum and is equal to latitude minus solar declination angle. This is the basis by which ancient mariners navigated the oceans. [3]
Noon (also known as noontime or midday) is 12 o'clock in the daytime. It is written as 12 noon, 12:00 m. (for meridiem, literally 12:00 midday), 12 p.m. (for post meridiem, literally "after midday"), 12 pm, or 12:00 (using a 24-hour clock) or 1200 (military time). Solar noon is the time when the Sun appears to contact the local celestial meridian.
On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...
Similar equations are coded into a Fortran 90 routine in Ref. [3] and are used to calculate the solar zenith angle and solar azimuth angle as observed from the surface of the Earth. Start by calculating n, the number of days (positive or negative, including fractional days) since Greenwich noon, Terrestrial Time, on 1 January 2000 .
For most of standard time months, solar noon comes close to 12 p.m. on the wall clock. But during daylight saving months, that midpoint usually comes after 1 p.m.
The figure on the right is calculated using the solar geometry routine in Ref. [8] as follows: For a given latitude and a given date, calculate the declination of the Sun using longitude and solar noon time as inputs to the routine; Calculate the sunrise hour angle using the sunrise equation;