Search results
Results from the WOW.Com Content Network
The mechanical advantage of a pulley system can be analysed using free body diagrams which balance the tension force in the rope with the force of gravity on the load. In an ideal system, the massless and frictionless pulleys do not dissipate energy and allow for a change of direction of a rope that does not stretch or wear.
The free body diagrams of the two hanging masses of the Atwood machine. Our sign convention, depicted by the acceleration vectors is that m 1 accelerates downward and that m 2 accelerates upward, as would be the case if m 1 > m 2. An equation for the acceleration can be derived by analyzing forces.
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).
Diagram 3 shows three rope parts supporting the load W, which means the tension in the rope is W/3. Thus, the mechanical advantage is three-to-one. By adding a pulley to the fixed block of a gun tackle the direction of the pulling force is reversed though the mechanical advantage remains the same, Diagram 3a. This is an example of the Luff tackle.
Examples of rope and pulley systems illustrating mechanical advantage. Consider lifting a weight with rope and pulleys. A rope looped through a pulley attached to a fixed spot, e.g. a barn roof rafter, and attached to the weight is called a single pulley. It has a mechanical advantage (MA) = 1 (assuming frictionless bearings in the pulley ...
Simple machines are elementary examples of kinematic chains that are used to model mechanical systems ranging from the steam engine to robot manipulators. The bearings that form the fulcrum of a lever and that allow the wheel and axle and pulleys to rotate are examples of a kinematic pair called a hinged joint. Similarly, the flat surface of an ...
Examples of symmetrical motion mechanisms include: Windshield wipers; Engine mechanisms or pistons; Automobile window crank; Other applications require that the mechanism-to-be-designed has a faster average speed in one direction than the other. This category of mechanism is most desired for design when work is only required to operate in one ...
Free body diagrams of a block on a flat surface and an inclined plane. Forces are resolved and added together to determine their magnitudes and the net force. Free-body diagrams can be used as a convenient way to keep track of forces acting on a system.