enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    If the resistance is not constant, the previous equation cannot be called Ohm's law, but it can still be used as a definition of static/DC resistance. [4] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current.

  3. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    The ball was charged with a known charge of static electricity, and a second charged ball of the same polarity was brought near it. The two charged balls repelled one another, twisting the fiber through a certain angle, which could be read from a scale on the instrument. By knowing how much force it took to twist the fiber through a given angle ...

  4. Static electricity - Wikipedia

    en.wikipedia.org/wiki/Static_electricity

    Static electricity is an imbalance of electric charges within or on the surface of a material. The charge remains until it can move away by an electric current or electrical discharge . The word "static" is used to differentiate it from current electricity , where an electric charge flows through an electrical conductor .

  5. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    However, since the magnetic field is described as a function of electric field, the equations of both fields are coupled and together form Maxwell's equations that describe both fields as a function of charges and currents. Evidence of an electric field: styrofoam peanuts clinging to a cat's fur due to static electricity.

  6. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    Electric potential (also called the electric field potential, potential drop, the electrostatic potential) is defined as the amount of work/energy needed per unit of electric charge to move the charge from a reference point to a specific point in an electric field.

  7. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    The law was first [1] formulated by Joseph-Louis Lagrange in 1773, [2] followed by Carl Friedrich Gauss in 1835, [3] both in the context of the attraction of ellipsoids. It is one of Maxwell's equations, which forms the basis of classical electrodynamics. [note 1] Gauss's law can be used to derive Coulomb's law, [4] and vice versa.

  8. US looking into reported detention of American-Iranian ... - AOL

    www.aol.com/us-looking-reported-detention...

    An American-Iranian journalist who once worked for a US-funded broadcaster is believed to have been detained in Iran, according to his former employer and multiple press freedom groups.

  9. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    The Heaviside–Feynman formula, also known as the Jefimenko–Feynman formula, can be seen as the point-like electric charge version of Jefimenko's equations. Actually, it can be (non trivially) deduced from them using Dirac functions , or using the Liénard-Wiechert potentials . [ 4 ]