enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phase margin - Wikipedia

    en.wikipedia.org/wiki/Phase_margin

    Phase margin and gain margin are two measures of stability for a feedback control system. They indicate how much the gain or the phase of the system can vary before it becomes unstable. Phase margin is the difference (expressed as a positive number) between 180° and the phase shift where the magnitude of the loop transfer function is 0 dB.

  3. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    Figures 8 and 9 illustrate the gain margin and phase margin for a different amount of feedback β. The feedback factor is chosen smaller than in Figure 6 or 7, moving the condition | β A OL | = 1 to lower frequency. In this example, 1 / β = 77 dB, and at low frequencies A FB ≈ 77 dB as well. Figure 8 shows the gain plot.

  4. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    Tools include the root locus, the Nyquist stability criterion, the Bode plot, the gain margin and phase margin. More advanced tools include Bode integrals to assess performance limitations and trade-offs, and describing functions to analyze nonlinearities in the frequency domain.

  5. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    Figure 5: Bode gain plot to find phase margin; scales are logarithmic, so labeled separations are multiplicative factors. For example, f 0 dB = βA 0 × f 1. Next, the choice of pole ratio τ 1 /τ 2 is related to the phase margin of the feedback amplifier. [9] The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode ...

  6. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    The definition of the damping ratio and natural frequency presumes that the overall feedback system is well approximated by a second order system; i.e. the system has a dominant pair of poles. This is often not the case, so it is good practice to simulate the final design to check if the project goals are satisfied.

  7. Linear–quadratic regulator - Wikipedia

    en.wikipedia.org/wiki/Linear–quadratic_regulator

    LQR controllers possess inherent robustness with guaranteed gain and phase margin, [1] and they also are part of the solution to the LQG (linear–quadratic–Gaussian) problem. Like the LQR problem itself, the LQG problem is one of the most fundamental problems in control theory .

  8. Feedback - Wikipedia

    en.wikipedia.org/wiki/Feedback

    An easier method, but less general, is to use Bode plots developed by Hendrik Bode to determine the gain margin and phase margin. Design to ensure stability often involves frequency compensation to control the location of the poles of the amplifier. Electronic feedback loops are used to control the output of electronic devices, such as ...

  9. Loop gain - Wikipedia

    en.wikipedia.org/wiki/Loop_gain

    Phase margin and gain margin; Nyquist plot; In telecommunications, the term "loop gain" can refer to the total usable power gain of a carrier terminal or two-wire repeater. The maximum usable gain is determined by, and may not exceed, the losses in the closed path. Summary of negative feedback amplifier terms