Search results
Results from the WOW.Com Content Network
In science and engineering, hydraulic conductivity (K, in SI units of meters per second), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fracture network. [1]
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The SI unit for permeability is the square metre (m 2). A practical unit for permeability is the darcy (d), or more commonly the millidarcy (md) (1 d ≈ 10 −12 m 2). The name honors the French Engineer Henry Darcy who first described the flow of water through sand filters for potable water supply. Permeability values for most materials ...
As a result, the clay disperses and settles into voids between peds, causing those to close. In this way the open structure of the soil is destroyed and the soil is made impenetrable to air and water. [41] Such sodic soil (also called haline soil) tends to form columnar peds near the surface. [42]
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
Consolidation analogy. The piston is supported by water underneath and a spring. When a load is applied to the piston, water pressure increases to support the load. As the water slowly leaks through the small hole, the load is transferred from the water pressure to the spring force. Consolidation is a process by which soils decrease in volume.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
the water is of constant density (incompressible), any external loads on the aquifer (e.g., overburden, atmospheric pressure) are constant, for the 1D radial problem the pumping well is fully penetrating a non-leaky aquifer, the groundwater is flowing slowly (Reynolds number less than unity), and; the hydraulic conductivity (K) is an isotropic ...