enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stepwise regression - Wikipedia

    en.wikipedia.org/wiki/Stepwise_regression

    The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...

  3. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  4. Minimum description length - Wikipedia

    en.wikipedia.org/wiki/Minimum_description_length

    MDL applies in machine learning when algorithms (machines) generate descriptions. Learning occurs when an algorithm generates a shorter description of the same data set. The theoretic minimum description length of a data set, called its Kolmogorov complexity, cannot, however, be computed.

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...

  6. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  7. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Ensemble learning, including both regression and classification tasks, can be explained using a geometric framework. [15] Within this framework, the output of each individual classifier or regressor for the entire dataset can be viewed as a point in a multi-dimensional space.

  8. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    This image represents an example of overfitting in machine learning. The red dots represent training set data. The green line represents the true functional relationship, while the blue line shows the learned function, which has been overfitted to the training set data. In machine learning problems, a major problem that arises is that of ...

  9. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    The estimated regression coefficients (having the same dimension as the number of selected eigenvectors) along with the corresponding selected eigenvectors are then used for predicting the outcome for a future observation. In machine learning, this technique is also known as spectral regression.