Search results
Results from the WOW.Com Content Network
The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror.. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power.
Therefore, in photography: Object height and distance are always real and positive. When the focal length is positive the image's height, distance and magnification are real and positive. Only if the focal length is negative, the image's height, distance and magnification are virtual and negative.
That distance is sometimes given on the filter in millimeters. A +3 close-up lens has a maximal working distance of 0.333 m or 333 mm. The magnification is the focal distance of the objective lens (f) divided by the focal distance of the close-up lens; i.e., the focal distance of the objective lens (in meters) multiplied by the diopter value (D) of the close-up lens:
Normal lens: angle of view of the diagonal about 50° and a focal length approximately equal to the image diagonal. Wide-angle lens: angle of view wider than 60° and focal length shorter than normal. Long-focus lens: any lens with a focal length longer than the diagonal measure of the film or sensor. [10] Angle of view is narrower.
Optically designed as a reverse telephoto to enable the lens to fit into a standard mount as the focal length can be less than the distance from lens mount to focal plane. Long-focus lens - a lens with a focal length greater than the diagonal of the film frame or sensor. Long focus lenses are relatively simple to design, the challenges being ...
If the medium surrounding an optical system has a refractive index of 1 (e.g., air or vacuum), then the distance from each principal plane to the corresponding focal point is just the focal length of the system. In the more general case, the distance to the foci is the focal length multiplied by the index of refraction of the medium.
Using a positive lens of focal length f, a virtual image results when S 1 < f, the lens thus being used as a magnifying glass (rather than if S 1 ≫ f as for a camera). Using a negative lens ( f < 0 ) with a real object ( S 1 > 0 ) can only produce a virtual image ( S 2 < 0 ), according to the above formula.
A single-element camera lens is as long as its focal length; for example, 500 mm-focal-length lens requires 500 mm from the lens to the image plane. A telephoto lens is made physically shorter than its nominal focal length by pairing a front positive imaging cell with a rear magnifying negative cell.