Search results
Results from the WOW.Com Content Network
The subject of this article is the study of generalizations of such an examples, and the description of the methods that are used for computing the solutions. A system of polynomial equations, or polynomial system is a collection of equations
Solutions to polynomial systems computed using numerical algebraic geometric methods can be certified, meaning that the approximate solution is "correct".This can be achieved in several ways, either a priori using a certified tracker, [7] [8] or a posteriori by showing that the point is, say, in the basin of convergence for Newton's method.
In some other cases, in particular if the equation is in one unknown, it is possible to solve the equation for rational-valued unknowns (see Rational root theorem), and then find solutions to the Diophantine equation by restricting the solution set to integer-valued solutions. For example, the polynomial equation + + = has as rational solutions ...
Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.
Most textbook solutions of the quartic equation require a substitution that is hard to memorize. Here is an approach that makes it easy to understand. The job is done if we can factor the quartic equation into a product of two quadratics. Let
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
A simplified version of the LLL factorization algorithm is as follows: calculate a complex (or p-adic) root α of the polynomial () to high precision, then use the Lenstra–Lenstra–Lovász lattice basis reduction algorithm to find an approximate linear relation between 1, α, α 2, α 3, . . . with integer coefficients, which might be an ...
The field of elimination theory was motivated by the need of methods for solving systems of polynomial equations. One of the first results was Bézout's theorem, which bounds the number of solutions (in the case of two polynomials in two variables at Bézout time).