Search results
Results from the WOW.Com Content Network
The ways in which data mining can be used can in some cases and contexts raise questions regarding privacy, legality, and ethics. [28] In particular, data mining government or commercial data sets for national security or law enforcement purposes, such as in the Total Information Awareness Program or in ADVISE, has raised privacy concerns. [29 ...
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Process mining is a family of techniques for analyzing event data to understand and improve operational processes. Part of the fields of data science and process management, process mining is generally built on logs that contain case id, a unique identifier for a particular process instance; an activity, a description of the event that is occurring; a timestamp; and sometimes other information ...
Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.
A new and novel technique called System properties approach has also been employed where ever rank data is available. [6] Statistical analysis of research data is the most comprehensive method for determining if data fraud exists. Data fraud as defined by the Office of Research Integrity (ORI) includes fabrication, falsification and plagiarism.
In many cases, the model is chosen on the basis of detection theory to try to guess the probability of an outcome given a set amount of input data, for example given an email determining how likely that it is spam. Models can use one or more classifiers in trying to determine the probability of a set of data belonging to another set. For ...
The modern conception of data science as an independent discipline is sometimes attributed to William S. Cleveland. [23] In 2014, the American Statistical Association's Section on Statistical Learning and Data Mining changed its name to the Section on Statistical Learning and Data Science, reflecting the ascendant popularity of data science. [24]
A review and critique of data mining process models in 2009 called the CRISP-DM the "de facto standard for developing data mining and knowledge discovery projects." [16] Other reviews of CRISP-DM and data mining process models include Kurgan and Musilek's 2006 review, [8] and Azevedo and Santos' 2008 comparison of CRISP-DM and SEMMA. [9]