Search results
Results from the WOW.Com Content Network
A quantum number beginning in n = 3,ℓ = 0, describes an electron in the s orbital of the third electron shell of an atom. In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of ...
In quantum mechanics, the principal quantum number (symbolized n) is one of four quantum numbers assigned to each electron in an atom to describe that electron's state. Its values are natural numbers (from one) making it a discrete variable.
The principal quantum number (n) is shown at the right of each row. In quantum mechanics, the azimuthal quantum number ℓ is a quantum number for an atomic orbital that determines its orbital angular momentum and describes aspects of the angular shape of the orbital.
The number of nodal spheres equals n-ℓ-1, consistent with the restriction ℓ ≤ n-1 on the quantum numbers. The principal quantum number controls the total number of nodal surfaces which is n-1. [31] Loosely speaking, n is energy, ℓ is analogous to eccentricity, and m is orientation.
The spin magnetic quantum number m s specifies the z-axis component of the spin angular momentum for a particle having spin quantum number s. For an electron, s is 1 ⁄ 2 , and m s is either + 1 ⁄ 2 or − 1 ⁄ 2 , often called "spin-up" and "spin-down", or α and β.
s = spin quantum number; m s = spin magnetic quantum number; ℓ = Azimuthal quantum number; m ℓ = azimuthal magnetic quantum number; j = total angular momentum quantum number; m j = total angular momentum magnetic quantum number
The energy levels in the hydrogen atom depend only on the principal quantum number n. For a given n , all the states corresponding to ℓ = 0 , … , n − 1 {\displaystyle \ell =0,\ldots ,n-1} have the same energy and are degenerate.
A certain number of good quantum numbers can be used to specify uniquely a certain quantum state only when the observables corresponding to the good quantum numbers form a CSCO. If the observables commute, but don't form a CSCO, then their good quantum numbers refer to a set of states. In this case they don't refer to a state uniquely.