enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Polynomial_remainder_theorem

    In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials.It states that, for every number , any polynomial is the sum of () and the product of and a polynomial in of degree one less than the degree of .

  3. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]

  4. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to ...

  5. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...

  6. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    This is the form of the remainder term mentioned after the actual statement of Taylor's theorem with remainder in the mean value form. The Lagrange form of the remainder is found by choosing G ( t ) = ( x − t ) k + 1 {\displaystyle G(t)=(x-t)^{k+1}} and the Cauchy form by choosing G ( t ) = t − a {\displaystyle G(t)=t-a} .

  7. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Another abbreviated method is polynomial short division (Blomqvist's method). Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R,

  8. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :

  9. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.