enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics , the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations , namely those whose matrix is positive-semidefinite .

  3. Derivation of the conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    In numerical linear algebra, the conjugate gradient method is an iterative method for numerically solving the linear system = where is symmetric positive-definite, without computing explicitly.

  4. Conjugate gradient squared method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_squared...

    As with the conjugate gradient method, biconjugate gradient method, and similar iterative methods for solving systems of linear equations, the CGS method can be used to find solutions to multi-variable optimisation problems, such as power-flow analysis, hyperparameter optimisation, and facial recognition.

  5. Nonlinear conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_conjugate...

    Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...

  6. Preconditioner - Wikipedia

    en.wikipedia.org/wiki/Preconditioner

    Examples of popular preconditioned iterative methods for linear systems include the preconditioned conjugate gradient method, the biconjugate gradient method, and generalized minimal residual method.

  7. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    The prototypical method in this class is the conjugate gradient method (CG) which assumes that the system matrix is symmetric positive-definite. For symmetric (and possibly indefinite) A {\displaystyle A} one works with the minimal residual method (MINRES).

  8. Matrix-free methods - Wikipedia

    en.wikipedia.org/wiki/Matrix-free_methods

    Matrix-free conjugate gradient method has been applied in the non-linear elasto-plastic finite element solver. [7] Solving these equations requires the calculation of the Jacobian which is costly in terms of CPU time and storage. To avoid this expense, matrix-free methods are employed.

  9. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.