Search results
Results from the WOW.Com Content Network
The radical symbol refers to the principal value of the square root function called the principal square root, which is the positive one. The two square roots of a negative number are both imaginary numbers , and the square root symbol refers to the principal square root, the one with a positive imaginary part.
√ (square-root symbol) Denotes square root and is read as the square root of. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of.
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
radical symbol (for square root) 1637 (with the vinculum above the radicand) René Descartes (La Géométrie) % percent sign: 1650 (approx.) unknown
greek beta symbol u+03d1: ϑ: greek theta symbol u+03d2: ϒ: greek upsilon with hook symbol u+03d5: ϕ: greek phi symbol u+03f0: ϰ: greek kappa symbol u+03f1: ϱ: greek rho symbol u+03f4: ϴ: greek capital theta symbol u+03f5: ϵ: greek lunate epsilon symbol u+03f6 ϶ greek reversed lunate epsilon symbol
The classic proof that the square root of 2 is irrational is a refutation by contradiction. [11] Indeed, we set out to prove the negation ¬ ∃ a, b ∈ . a/b = √ 2 by assuming that there exist natural numbers a and b whose ratio is the square root of two, and derive a contradiction.
where (the square-root function has its cut along the negative real axis and) the part of the real axis which does not lie strictly between −1 and +1 is the branch cut between the principal sheet of arcsin and other sheets; = (), +
Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function =, the two inverses are the cube super-root of y and the super-logarithm base y of x.