enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fold (higher-order function) - Wikipedia

    en.wikipedia.org/wiki/Fold_(higher-order_function)

    Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...

  3. Map (higher-order function) - Wikipedia

    en.wikipedia.org/wiki/Map_(higher-order_function)

    Map functions can be and often are defined in terms of a fold such as foldr, which means one can do a map-fold fusion: foldr f z . map g is equivalent to foldr (f . g) z. The implementation of map above on singly linked lists is not tail-recursive, so it may build up a lot of frames on the stack when called with a large list. Many languages ...

  4. Map folding - Wikipedia

    en.wikipedia.org/wiki/Map_folding

    In the stamp folding problem, the paper is a strip of stamps with creases between them, and the folds must lie on the creases. In the map folding problem, the paper is a map, divided by creases into rectangles, and the folds must again lie only along these creases. Lucas (1891) credits the invention of the stamp folding problem to Émile ...

  5. Mathematics of paper folding - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_paper_folding

    For example, the Miura map fold is a rigid fold that has been used to deploy large solar panel arrays for space satellites. The napkin folding problem is the problem of whether a square or rectangle of paper can be folded so the perimeter of the flat figure is greater than that of the original square.

  6. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    [May, Robert M. (1976) 1] A common source of such sensitivity to initial conditions is that the map represents a repeated folding and stretching of the space on which it is defined. In the case of the logistic map, the quadratic difference equation describing it may be thought of as a stretching-and-folding operation on the interval (0,1) .

  7. Geometric Folding Algorithms - Wikipedia

    en.wikipedia.org/wiki/Geometric_Folding_Algorithms

    It includes the NP-completeness of testing flat foldability, [2] the problem of map folding (determining whether a pattern of mountain and valley folds forming a square grid can be folded flat), [2] [4] the work of Robert J. Lang using tree structures and circle packing to automate the design of origami folding patterns, [2] [4] the fold-and ...

  8. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    Each node in the map space is associated with a "weight" vector, which is the position of the node in the input space. While nodes in the map space stay fixed, training consists in moving weight vectors toward the input data (reducing a distance metric such as Euclidean distance) without spoiling the topology induced from the map space. After ...

  9. Regular paperfolding sequence - Wikipedia

    en.wikipedia.org/wiki/Regular_paperfolding_sequence

    The regular paperfolding sequence corresponds to folding a strip of paper consistently in the same direction. If we allow the direction of the fold to vary at each step we obtain a more general class of sequences. Given a binary sequence (f i), we can define a general paperfolding sequence with folding instructions (f i).