Search results
Results from the WOW.Com Content Network
In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n-matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1)-submatrices of B.
The cofactors feature prominently in Laplace's formula for the expansion of determinants, which is a method of computing larger determinants in terms of smaller ones. Given an n × n matrix A = ( a ij ) , the determinant of A , denoted det( A ) , can be written as the sum of the cofactors of any row or column of the matrix multiplied by the ...
In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.
Transpose of the cofactor matrix: The inverse of a matrix is its adjugate matrix divided by its determinant: Augmented matrix: Matrix whose rows are concatenations of the rows of two smaller matrices: Used for performing the same row operations on two matrices Bézout matrix: Square matrix whose determinant is the resultant of two polynomials
Cofactor may also refer to: Cofactor (biochemistry), a substance that needs to be present in addition to an enzyme for a certain reaction to be catalysed; A domain parameter in elliptic curve cryptography, defined as the ratio between the order of a group and that of the subgroup; Cofactor (linear algebra), the signed minor of a matrix
Those proposals could also hinder economic growth and pressure an already bloated federal deficit, further complicating the Federal Reserve's path forward for interest rates.
In the mathematical field of graph theory, Kirchhoff's theorem or Kirchhoff's matrix tree theorem named after Gustav Kirchhoff is a theorem about the number of spanning trees in a graph, showing that this number can be computed in polynomial time from the determinant of a submatrix of the graph's Laplacian matrix; specifically, the number is equal to any cofactor of the Laplacian matrix.
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.