Search results
Results from the WOW.Com Content Network
The condition is evaluated true or false as a Boolean expression. On the basis of the evaluation of the Boolean condition, the entire expression returns value_if_true if condition is true, but value_if_false otherwise. Usually the two sub-expressions value_if_true and value_if_false must have the same type, which determines the type of the ...
In the area of mathematics known as numerical ordinary differential equations, the direct multiple shooting method is a numerical method for the solution of boundary value problems. The method divides the interval over which a solution is sought into several smaller intervals, solves an initial value problem in each of the smaller intervals ...
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.
It is easy to find situations for which Newton's method oscillates endlessly between two distinct values. For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x -axis at 1 and that the tangent line to f at 1 intersects the x -axis at 0. [ 19 ]
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .
A few steps of the bisection method applied over the starting range [a 1;b 1].The bigger red dot is the root of the function. In mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs.
Inequality i) is known as the Armijo rule [4] and ii) as the curvature condition; i) ensures that the step length decreases 'sufficiently', and ii) ensures that the slope has been reduced sufficiently. Conditions i) and ii) can be interpreted as respectively providing an upper and lower bound on the admissible step length values.
Under these conditions, the method is stable if and only if the following condition is satisfied: | | (A von Neumann stability analysis can show the necessity of this stability condition.) The Lax–Friedrichs method is classified as having second-order dissipation and third order dispersion . [ 2 ]