enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Metric tensor - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor

    The metric tensor is an example of a tensor field. The components of a metric tensor in a coordinate basis take on the form of a symmetric matrix whose entries transform covariantly under changes to the coordinate system. Thus a metric tensor is a covariant symmetric tensor.

  3. Metric tensor (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor_(general...

    In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study.The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

  4. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    In general relativity, the connection plays the role of the gravitational force field with the corresponding gravitational potential being the metric tensor. When the coordinate system and the metric tensor share some symmetry, many of the Γ i jk are zero. The Christoffel symbols are named for Elwin Bruno Christoffel (1829–1900). [7]

  5. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    The metric tensor is a central object in general relativity that describes the local geometry of spacetime (as a result of solving the Einstein field equations). Using the weak-field approximation, the metric tensor can also be thought of as representing the 'gravitational potential'. The metric tensor is often just called 'the metric'.

  6. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The definition of a tensor as a multidimensional array satisfying a transformation law traces back to the work of Ricci. [1] An equivalent definition of a tensor uses the representations of the general linear group. There is an action of the general linear group on the set of all ordered bases of an n-dimensional vector space.

  7. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on a wall in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.

  8. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    where g is the metric tensor (see below). A vector can be specified with covariant coordinates (lowered indices, written v k ) or contravariant coordinates (raised indices, written v k ). From the above vector sums, it can be seen that contravariant coordinates are associated with covariant basis vectors, and covariant coordinates are ...

  9. Metric signature - Wikipedia

    en.wikipedia.org/wiki/Metric_signature

    A Lorentzian metric is a metric with signature (p, 1), or (1, p). There is another notion of signature of a nondegenerate metric tensor given by a single number s defined as (v − p), where v and p are as above, which is equivalent to the above definition when the dimension n = v + p is given or implicit.