Search results
Results from the WOW.Com Content Network
Polygon nets around a vertex {3,3} Defect 180° {3,4} Defect 120° {3,5} Defect 60° {3,6} Defect 0° {4,3} Defect 90° {4,4} Defect 0° {5,3} Defect 36° {6,3} Defect 0° A vertex needs at least 3 faces, and an angle defect. A 0° angle defect will fill the Euclidean plane with a regular tiling. By Descartes' theorem, the number of vertices is ...
The minimum bounding box of a regular tetrahedron. The minimal enclosing box of the regular tetrahedron is a cube, with side length 1/ √ 2 that of the tetrahedron; for instance, a regular tetrahedron with side length √ 2 fits into a unit cube, with the tetrahedron's vertices lying at the vertices (0,0,0), (0,1,1), (1,0,1) and (1,1,0) of the ...
The regular tetrahedron is the simplest convex deltahedron, a polyhedron in which all of its faces are equilateral triangles; there are seven other convex deltahedra. [3] The regular tetrahedron is also one of the five regular Platonic solids, a set of polyhedrons in which all of their faces are regular polygons. [4]
In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has a total of 62 faces: 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, with 60 vertices , and 120 edges .
A non-convex regular polygon is a regular star polygon. The most common example is the pentagram , which has the same vertices as a pentagon , but connects alternating vertices. For an n -sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as { n / m }.
A regular polygon is a planar figure with all edges equal and all corners equal. A regular polyhedron is a solid (convex) figure with all faces being congruent regular polygons, the same number arranged all alike around each vertex.
Two polyhedra of equal volume, cut into two pieces which can be reassembled into either polyhedron. The third of Hilbert's list of mathematical problems, presented in 1900, was the first to be solved.
1-uniform tilings include 3 regular tilings, and 8 semiregular ones, with 2 or more types of regular polygon faces. There are 20 2-uniform tilings, 61 3-uniform tilings, 151 4-uniform tilings, 332 5-uniform tilings and 673 6-uniform tilings. Each can be grouped by the number m of distinct vertex figures, which are also called m-Archimedean tilings.