Search results
Results from the WOW.Com Content Network
Mixture of polymers and solvent on a lattice. Flory–Huggins solution theory is a lattice model of the thermodynamics of polymer solutions which takes account of the great dissimilarity in molecular sizes in adapting the usual expression for the entropy of mixing.
An ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. [1] The enthalpy of mixing is zero [2] as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes.
This equation shows that in thermodynamics intensive properties are not independent but related, making it a mathematical statement of the state postulate. When pressure and temperature are variable, only of components have independent values for chemical potential and Gibbs' phase rule follows. The Gibbs−Duhem equation cannot be used for ...
Chemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measurements of various thermodynamic properties, but also the application of mathematical methods to the ...
A plot of typical polymer solution phase behavior including two critical points: a LCST and an UCST. The liquid–liquid critical point of a solution, which occurs at the critical solution temperature, occurs at the limit of the two-phase region of the phase diagram. In other words, it is the point at which an infinitesimal change in some ...
The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. [1]