Search results
Results from the WOW.Com Content Network
In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof. [1] [2] [3]
[1] An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. [2] The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.
The curvature is the reciprocal of radius of curvature. That is, the curvature is =, where R is the radius of curvature [5] (the whole circle has this curvature, it can be read as turn 2π over the length 2π R). This definition is difficult to manipulate and to express in formulas.
About Wikipedia; Contact us; Contribute Help; ... 1 Different definitions. 1 comment. ... Talk: Radius of curvature (applications)
Animation depicting evolution of a Cornu spiral with the tangential circle with the same radius of curvature as at its tip, also known as an osculating circle.. To travel along a circular path, an object needs to be subject to a centripetal acceleration (for example: the Moon circles around the Earth because of gravity; a car turns its front wheels inward to generate a centripetal force).
It can be calculated from the beam's vacuum wavelength λ 0, the radius of curvature R of the phase front, the index of refraction n (n=1 for air), and the beam radius w (defined at 1/e 2 intensity), according to: [1] = ().
Radius of curvature, the reciprocal of the curvature in differential geometry Minimum railway curve radius , the shortest allowable design radius for the centerline of railway tracks Topics referred to by the same term
Alternatively, as before, k may be taken to belong to the set {−1 ,0, +1} (for negative, zero, and positive curvature respectively). Then r is unitless and a(t) has units of length. When k = ±1, a(t) is the radius of curvature of the space, and may also be written R(t). Note that when k = +1, r is essentially a third angle along with θ and φ.