Search results
Results from the WOW.Com Content Network
Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to float on a water surface without becoming even partly submerged.
Drop of water bouncing on a water surface subject to vibrations Surface tension prevents water droplet from being cut by a hydrophobic knife. Liquid forms drops because it exhibits surface tension. [1] A simple way to form a drop is to allow liquid to flow slowly from the lower end of a vertical tube of small diameter.
The contact angle (symbol θ C) is the angle between a liquid surface and a solid surface where they meet. More specifically, it is the angle between the surface tangent on the liquid–vapor interface and the tangent on the solid–liquid interface at their intersection. It quantifies the wettability of a solid surface by a liquid via the ...
The Tolman length (also known as Tolman's delta) measures the extent by which the surface tension of a small liquid drop deviates from its planar value. It is conveniently defined in terms of an expansion in /, with = the equimolar radius (defined below) of the liquid drop, of the pressure difference across the droplet's surface:
The drop falls when the weight (mg) is equal to the circumference (2πr) multiplied by the surface tension (σ). The surface tension can be calculated provided the radius of the tube (r) and mass of the fluid droplet (m) are known. Alternatively, since the surface tension is proportional to the weight of the drop, the fluid of interest may be ...
A: The bottom of a concave meniscus. B: The top of a convex meniscus. In physics (particularly fluid statics), the meniscus (pl.: menisci, from Greek 'crescent') is the curve in the upper surface of a liquid close to the surface of the container or another object, produced by surface tension.
Among the various ways to determine surface tension, Du Noüy ring method and Wilhelmy slide method are based on the separation of a solid object from the liquid surface, and Pendant drop method and Sessile drop or bubble method depend on the deformation of the spherical shape of a liquid drop. [1]
This may be written in the following form, known as the Ostwald–Freundlich equation: =, where is the actual vapour pressure, is the saturated vapour pressure when the surface is flat, is the liquid/vapor surface tension, is the molar volume of the liquid, is the universal gas constant, is the radius of the droplet, and is temperature.