Search results
Results from the WOW.Com Content Network
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.
Here the shear V compares with the slope θ, the moment M compares with the displacement v, and the external load w compares with the M/EI diagram. Below is a shear, moment, and deflection diagram. A M/EI diagram is a moment diagram divided by the beam's Young's modulus and moment of inertia.
Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...
Figure 1: (a) This simple supported beam is shown with a unit load placed a distance x from the left end. Its influence lines for four different functions: (b) the reaction at the left support (denoted A), (c) the reaction at the right support (denoted C), (d) one for shear at a point B along the beam, and (e) one for moment also at point B. Figure 2: The change in Bending Moment in a ...
For internal shear and moment, the constants can be found by analyzing the beam's free body diagram. For rotation and displacement, the constants are found using conditions dependent on the type of supports. For a cantilever beam, the fixed support has zero rotation and zero displacement.
Shear and moment diagram for a simply supported beam with a concentrated load at mid-span. In solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend.
Macaulay's method has been generalized for Euler-Bernoulli beams with axial compression, [3] to Timoshenko beams, [4] to elastic foundations, [5] and to problems in which the bending and shear stiffness changes discontinuously in a beam. [6]
Releasing the vertical reaction for A allows the beam to rotate to Δ. Likewise for part (c). Δ is typically taken as positive upwards. Part (d) of the figure shows the influence line for shear at point B. Using the beam sign convention and cutting the beam at B, we can deduce the figure shown.