Search results
Results from the WOW.Com Content Network
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors.
Illustration of a plane, showing the absolute values (unsigned dotted line lengths) of the coordinates of the points (2, 3), (0, 0), (−3, 1), and (−1.5, −2.5). The first of these signed ordered pairs is the abscissa of the corresponding point, and the second value is its ordinate.
A Graeco-Latin square or Euler square or pair of orthogonal Latin squares of order n over two sets S and T (which may be the same), each consisting of n symbols, is an n × n arrangement of cells, each cell containing an ordered pair (s, t), where s is in S and t is in T, such that every row and every column contains each element of S and each element of T exactly once, and that no two cells ...
The vertices are labeled with ordered pairs (x, y), where x and y are integers between 1 and 9. In this case, two distinct vertices labeled by (x, y) and (x′, y′) are joined by an edge if and only if: x = x′ (same column) or, y = y′ (same row) or,
An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes , [ 5 ] whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product .
A multiset may be formally defined as an ordered pair (A, m) where A is the underlying set of the multiset, formed from its distinct elements, and : + is a function from A to the set of positive integers, giving the multiplicity – that is, the number of occurrences – of the element a in the multiset as the number m(a).
A set with a partial order on it is called a partially ordered set, poset, or just ordered set if the intended meaning is clear. By checking these properties, one immediately sees that the well-known orders on natural numbers , integers , rational numbers and reals are all orders in the above sense.
2. In "Defining the ordered pair using set theory": "The above characteristic property of ordered pairs is all that is required to understand the role of ordered pairs in mathematics. Hence the ordered pair can be taken as a primitive notion, whose associated axiom is the characteristic property." The first sentence here seems fatuous.