Search results
Results from the WOW.Com Content Network
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b.
Fermat's theorem on sums of two squares is strongly related with the theory of Gaussian primes.. A Gaussian integer is a complex number + such that a and b are integers. The norm (+) = + of a Gaussian integer is an integer equal to the square of the absolute value of the Gaussian integer.
Euler's theorem is a generalization of Fermat's little theorem: For any modulus n and any integer a coprime to n, one has (), where φ(n) denotes Euler's totient function (which counts the integers from 1 to n that are coprime to n).
This proof, due to Euler, [3] uses induction to prove the theorem for all integers a ≥ 0. The base step, that 0 p ≡ 0 (mod p), is trivial. Next, we must show that if the theorem is true for a = k, then it is also true for a = k + 1. For this inductive step, we need the following lemma. Lemma.
The prime decomposition of the number 2450 is given by 2450 = 2 · 5 2 · 7 2.Of the primes occurring in this decomposition, 2, 5, and 7, only 7 is congruent to 3 modulo 4.
Euler proved Newton's identities, Fermat's little theorem, Fermat's theorem on sums of two squares, and made distinct contributions to the Lagrange's four-square theorem. He also invented the totient function φ(n) which assigns to a positive integer n the number of positive integers less than n and coprime to n.
In number theory, Euler's conjecture is a disproved conjecture related to Fermat's Last Theorem.It was proposed by Leonhard Euler in 1769. It states that for all integers n and k greater than 1, if the sum of n many k th powers of positive integers is itself a k th power, then n is greater than or equal to k: