enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...

  3. Seven Bridges of Königsberg - Wikipedia

    en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

    In the history of mathematics, Euler's solution of the Königsberg bridge problem is considered to be the first theorem of graph theory and the first true proof in the theory of networks, [4] a subject now generally regarded as a branch of combinatorics.

  4. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    This is known as Euler's Theorem: A connected graph has an Euler cycle if and only if every vertex has even degree. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. These definitions coincide for connected graphs. [2]

  5. Euler's sum of powers conjecture - Wikipedia

    en.wikipedia.org/wiki/Euler's_sum_of_powers...

    In number theory, Euler's conjecture is a disproved conjecture related to Fermat's Last Theorem.It was proposed by Leonhard Euler in 1769. It states that for all integers n and k greater than 1, if the sum of n many k th powers of positive integers is itself a k th power, then n is greater than or equal to k:

  6. Glossary of number theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_number_theory

    Euler's theorem states that if n and a are coprime positive integers, then a φ(n) is congruent to 1 mod n. Euler's theorem generalizes Fermat's little theorem. Euler's totient function For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive. For example, φ(4) = 2 ...

  7. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    Euler proved Newton's identities, Fermat's little theorem, Fermat's theorem on sums of two squares, and made distinct contributions to the Lagrange's four-square theorem. He also invented the totient function φ(n) which assigns to a positive integer n the number of positive integers less than n and coprime to n.

  8. Pentagonal number theorem - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_number_theorem

    For example, the diagram below shows n = 20 and the partition 20 = 7 + 6 + 4 + 3. Let m be the number of elements in the smallest row of the diagram ( m = 3 in the above example). Let s be the number of elements in the rightmost 45 degree line of the diagram ( s = 2 dots in red above, since 7 − 1 = 6, but 6 − 1 > 4).

  9. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity therefore states that the limit, as n approaches infinity, of (+ /) is equal to −1. This limit is illustrated in the animation to the right. Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x,