Search results
Results from the WOW.Com Content Network
The BN-350 fast-neutron reactor at Aktau, Kazakhstan.It operated between 1973 and 1994. A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors.
A fast neutron reactor uses fast neutrons, so it does not use a moderator. Moderators may absorb a lot of neutrons in a thermal reactor , and fast fission produces a higher average number of neutrons per fission, so fast reactors have better neutron economy making a plutonium breeder reactor possible.
Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.
The ratio of neutrons released per neutron absorbed (η) in 233 U is greater than two over a wide range of energies, including the thermal spectrum. A breeding reactor in the uranium–plutonium cycle needs to use fast neutrons, because in the thermal spectrum one neutron absorbed by 239 Pu on average leads to less than two neutrons.
Nonradioactive 133 Cs capturing a neutron and becoming 134 Cs, which is radioactive with a half-life of 2 years; Many of the fission products with mass 147 or greater such as 147 Pm, 149 Sm, 151 Sm, and 155 Eu have significant cross sections for neutron capture, so that one heavy fission product atom can undergo multiple successive neutron ...
Some reactions are only possible with fast neutrons: (n,2n) reactions produce small amounts of protactinium-231 and uranium-232 in the thorium cycle which is otherwise relatively free of highly radioactive actinide products. 9 Be + n → 2α + 2n can contribute some additional neutrons in the beryllium neutron reflector of a nuclear weapon.
In nuclear physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. The neutron cross section σ can be defined as the area in cm 2 for which the number of neutron-nuclei reactions taking place is equal to the product of the number of incident neutrons that would pass through the area and the number of ...
The fraction of neutrons that are delayed is called β, and this fraction is typically less than 1% of all the neutrons in the chain reaction. [16] The delayed neutrons allow a nuclear reactor to respond several orders of magnitude more slowly than just prompt neutrons would alone. [17] Without delayed neutrons, changes in reaction rates in ...